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ABSTRACT
Federated learning has been widely applied to enable decentralized
devices, which each have their own local data, to learn a shared
model. However, learning from real-world data can be challenging,
as it is rarely identically and independently distributed (IID) across
edge devices (a key assumption for current high-performing and
low-bandwidth algorithms). We present a novel approach, FedCD,
which clones and deletes models to dynamically group devices
with similar data. Experiments on the CIFAR-10 dataset show that
FedCD achieves higher accuracy and faster convergence compared
to a FedAvg baseline on non-IID data while incurring minimal
computation, communication, and storage overheads.
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1 INTRODUCTION
The most successful machine learning methods generalize well
to different data sources by training on large amounts of data.
However, in many important applications such as healthcare, data
is subject to strict privacy constraints that prevent direct access to
local data. In addition, devices often have limited communication
bandwidth and on-device memory.

Federated learning is an increasingly popular method that ad-
dresses these constraints. In particular, it differs from other machine
learning approaches by allowing multiple edge devices to learn a
shared global model without the need to reveal their data to the
central server. Under the standard federated learning approach
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(FedAvg), each device trains a copy of the global model locally
on its own data and sends a weight update to the central server,
which averages all updated model weights and re-deploys them as
the new model to the individual devices [6]. This allows a single
global model to train on multiple devices’ sensitive data without
compromising privacy, e.g. by moving the data off-device.

Unfortunately, FedAvg and other recently developed privacy-
and bandwidth-conscious approaches perform poorly when data is
not independent and identically distributed (IID) across devices [5].
Non-IID data may cause different devices’ updates to conflict with
each other, which could lead to significant oscillations between
training rounds and slower convergence.

Devices often belong to one of many archetypes, where an
archetype describes a subset of non-IID data that is itself IID. Previ-
ously proposed learning schemes such as FedAvg attempt to learn
a single global model that performs well for all archetypes, yet this
is often difficult or even infeasible when data is non-IID. In con-
trast, we propose Federated Cloning-and-Deletion (FedCD), a learn-
ing scheme that results in a specialized model for each archetype
through iterative cloning of global models at specified milestones,
adaptive updating of a high-scoring subset of global models, and
deletion of poor-performingmodels. Bymaintainingmultiple global
models, devices can preferentially update models that perform well
on their local data, thus self-selecting into groups with similar data.
This allows for both faster convergence and higher accuracy.

1.1 Related Work
Most federated learning approaches use stochastic gradient descent,
which optimally requires IID sampling of the data. In practice,
federated learning rarely sees IID data across edge devices and
learning on non-IID data is an open problem [5]. Recent work has
proposed various solutions to addressing this challenge:

1.1.1 Globally Shared Subsets. Zhao et al. found that sharing just
5% of global data improved accuracy by 30% on non-iid subsets of
the CIFAR-10 dataset [8]. However, a globally shared subset of data
that is representative of all devices’ individual data can be difficult
to obtain or synthesize and is generally infeasible in many contexts.

1.1.2 Peer-to-peer Federated Learning. Peer-to-peer learning schemes
increase the number of global models and the communication cost
per round as every device participates in each round with a unique
model [2, 7]. Although this approach increases accuracy, in many
scenarios such as deploying edge devices in the field where secu-
rity is important, individual learners would not be connected to
each other in favor of maintaining a single, stable connection to a
centralized server. Furthermore, not every device will be online for
every round of training realistically.
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1.1.3 Personalized Federated Learning. FedAvg generally fails as
its objective is to find a single shared global model rather than
specialized models for different groups of edge devices. Personal-
ized FL methods, heavily based on Model Agnostic Meta Learn-
ing (MAML), run FedAvg followed by specialization [3, 4]. Our
approach eliminates many rounds of general model training by
developing specialized models early on.

2 APPROACH
Algorithm 1 describes FedCD, which addresses non-IID federated
learning with minimal communication and on-device memory over-
heads after convergence. FedCD clones high-performing models at
milestone rounds and deletes low-performing models while updat-
ing model scores for each device.

The FedCD algorithm, like FedAvg, begins with a global model
on a centralized server that all devices update to. At every milestone
round, every model on the centralized server is cloned and com-
pressed. In each training round, every participating device trains
its local models for 𝐸 epochs, compresses the models, and sends
its weight update and score (with some randomization) for each
model to the global server, where each model’s score on a given
device reflects how well that model performs on the device’s vali-
dation data. Then the server updates each global model by taking
the weighted average of all devices’ weight updates for that model
and weighing them by that model’s score. These global models are
then re-deployed to the appropriate edge devices, and low-scoring
models are deleted.

Note that in Algorithm 1, 𝑀 denotes the total number of pre-
viously created global models (including deleted models), which
doubles at every milestone. Let 𝑐 (𝑖)𝑚 ≥ 0 denote the score that device
𝑖 assigns model𝑚, where a higher score denotes a better performing
model. We modify the weight update function as follows. Let 𝑁 be
the number of devices. Let𝑤 (𝑖)

𝑚 denote the weight vector for model
𝑚 by device 𝑖 . Then we have

𝑤𝑚 =

∑𝑁
𝑖=1𝑤

(𝑖)
𝑚 𝑐
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We experimentally investigated multiple ways of generating
model score 𝑐 (𝑖)𝑚 based on the accuracy 𝑎 (𝑖)𝑚 [𝑘] that model𝑚 has
on device 𝑖’s validation data in round 𝑘 . We found that using a
normalized average of the ℓ = 3 most recent rounds’ validation
accuracy results in the highest performance while being robust to
oscillation. Thus we define the score 𝑐 (𝑖)𝑚 [𝑟 ] of model𝑚 by device 𝑖
at round 𝑟 as
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When models are cloned, they receive the score of 1−𝑐 (𝑖)𝑝 , where
𝑝 denotes the parent model, to encourage differentiation between
the parent models and the newly cloned models.

Algorithm 1 FedCD Algorithm.
Input: Devices 𝑖 = 1, ..., 𝑁 , a global model𝑚 = 1 (𝑀 = 1)
Initialize all scores 𝑐 (𝑖)𝑚 = 1
for 𝑡 = 1, 2, . . . ,𝑇 do

round_devices = a random subset of 𝐾 devices
for 𝑖 ∈ round_devices do

Device 𝑖 trains all models𝑚 s.t. 𝑐 (𝑖)𝑚 ≠ 0 on its local data for
𝐸 epochs

end for
for𝑚 = 1, 2, . . . , 𝑀 do

w_avg = AverageWeights(𝑖 s.t. 𝑐 (𝑖)𝑚 ≠ 0)
Learner updates model𝑚 with w_avg

end for
Evaluate models with local validation data
Update scores for all devices with normalized average of vali-
dation accuracy
For each device 𝑖 , delete underperforming models𝑚 for which
max(𝑐 (𝑖) ) − 𝑐 (𝑖)𝑚 ≥ 𝜎 (𝑐 (𝑖) )
Delete models𝑚 for which 𝑐 (𝑖)𝑚 == 0 for all devices 𝑖 from the
central server
if 𝑡 is a milestone then

for𝑚 = 1, 2, . . . , 𝑀, 𝑖 = 1, 2, . . . 𝑁 do
if 𝑐 (𝑖)𝑚 > 0 then

Clone model𝑚 as model𝑀 +𝑚
end if

end for
𝑀 = 2 ·𝑀
Normalize model scores for all devices

end if
end for

To avoid exploding storage requirements, we delete all models
𝑚 for which the following holds

max(𝑐 (𝑖) ) − 𝑐 (𝑖)𝑚 ≥ 𝜎 (𝑐 (𝑖) ) (4)

wheremax(𝑐 (𝑖) ) denotes the score that device 𝑖 assigns to its highest
performing model, and 𝜎 (𝑐 (𝑖) ) denotes the standard deviation over
the model scores by device 𝑖 . Note that using a standard deviation
based deletion criterion ensures that any device will maintain at
least two models if there are at least two global models. After 20
rounds of training, if a device has two active models it will delete
the lower-performing model𝑚′ if 𝑐 (𝑖)

𝑚′ ≤ 0.3.
For our experiments, we define the performance of a device as

the accuracy of its highest-scoring model on its local testing data.

2.1 Rationale
By creating copies of the global model with different model scores
to encourage exploration we can learn the archetypes of the edge
devices and update weights based on the device’s archetype. Then
edge devices with the same archetype will preferentially update
the same global model.

Each model fits its devices’ distribution without access to the de-
vices’ data, thereby effectively addressing the problems that non-IID
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data pose to federated learning. Compression via quantization al-
lows for multiple smaller models on-device, and faster convergence
leads to reduced communication cost.

3 EXPERIMENTAL RESULTS
Our FedCD system consists of 30 learners that have a non-IID
subset of the global data. To evaluate our approach, we compared
the performance of FedCD to the performance of FedAvg on CIFAR-
10, a dataset typically used for FL benchmarking, in two different
setups. We also measured and compared the communication costs
between the central server and devices and the time to convergence
under FedCD and FedAvg.

3.1 Setup
We used data from CIFAR-10 [1], a comparison dataset standard for
federated learning, consisting of 40k training images, 10k validation
images, and 10k test images. Each device has a non-iid sample from
the larger dataset that is consistent with its archetype to comprise its
training/validation/test set. Each device received and sent weights
to a 10-layer convolutional neural network. We exclusively used
a device’s validation set to determine its scores for a given model.
We evaluated the best performing model for each device against its
test set.1

Our experimental setup specified two required characteristics
for each edge device: Archetypes (to describe the data distribution)
and scores for each model (a normalized weighting of models that
the device is maintaining). 15 devices participated in each training
round and the global model was set to the weighted average of their
updates.

3.2 Hierarchical Archetypes
In the real world, individual archetypes are seldom perfectly in-
dependent but rather can be grouped into "meta-archetypes" that
each include several different archetypes. An example of this struc-
ture are next-word predictions on phones of users living in a pre-
dominantly English-speaking country versus in a predominantly
Spanish-speaking country (where the countries aremeta-archetypes)
of all ages (where the age groups are archetypes). Different age
groups in the same country will likely share some common vernac-
ular but common words across countries might be very limited due
to the language barrier.

To test the applicability of FedCD in this scenario, we constructed
two sets of data (meta-archetypes that have data labeled 0,1,2,3,4
and 5,6,7,8,9 respectively) with 10 archetypes represented by the
labels, i.e. an edge device of meta-archetype 1 only has access to
training examples with labels 0, 1, 2, 3, and 4. The experiment
was run with 3 devices per archetype with bias 𝑏 ∼ 𝑈𝑛𝑖 𝑓 (0.6, 0.7),
where the bias denotes the fraction of a device’s local dataset that
consists of examples whose labels equal the archetype, i.e. a device
with archetype 3 has 5𝑘 training images, of which 𝑏 ∗ 5k images
have label 3 and (1−𝑏)/4 ∗ 5k images have labels 0, 1, 2, and 4 each.
We set the cloning milestones at rounds 5, 15, 25, and 30.

Figure 1 and 2 show that FedCD converges relatively quickly
(by round 35) and that FedCD is significantly more accurate on all
archetypes than FedAvg.
1See https://github.com/jessijzhao/fedcd/ for code.

(a) Test accuracy of the FedCD algorithm. There are 3 devices per
archetype and their average is shown. Archetypes 0-4 belong to one
meta-archetype and 5-9 to another.

(b) Comparisons of test accuracy for the FedAvg and FedCD (dotted)
algorithms over 50 rounds. FedAvg oscillates and underperforms
FedCD.

Figure 1: Experiments with 10 archetypes within 2 meta-
archetypes over 45 training rounds.

Figure 2: Average size of change in round-to-round perfor-
mance of FedCD versus FedAvg across all devices for 150
rounds for the hierarchical archetypes experiment.
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They also show that the twometa-archetypes converge to slightly
different accuracies (meta-archetype 0, consisting of archetypes 0,
1, 2, 3, and 4, performs worse than meta-archetype 1, consisting
of archetypes 5, 6, 7, 8, and 9.) The accuracy oscillations (where
archetypes from the same meta-archetype oscillate together) in
FedCD stop by round 10, whereas accuracy under FedAvg contin-
ues to oscillate past round 40 (see Figure 1). Furthermore, Figure 2
shows that while FedCD converged after approximately 35 rounds,
FedAvg failed to converge within 150 training rounds.

3.3 Hypergeometric Archetypes
Assuming a strict hierarchy excludes more complicated scenarios
where the true distribution of data may be further or closer to two
extremes. A real-world example of this setup are patient histories
of citizens who visited hospitals across the US. In all parts of the
country, an individual could have any disease, but hospitals in
different locations may see different distributions of patients with
respect to e.g. the severity of the disease, insurance quality, or
socioeconomic status.

To test the applicability of FedCD, each device sampled labeled
training examples from a hypergeometric distribution over labels
with 𝑁 = 110, 𝐾 ∈ {5, 25, 45, 65, 85, 105} based on its archetype, and
𝑛 = 10 (see Figure 3).

Figure 3: Visualization of the hypergeometric distribution
for 6 archetypes across the 10 labels of CIFAR-10.

We chose the hypergeometric distribution as it becomes a dis-
crete approximation of the standard normal distribution when
𝑁,𝐾, 𝑛 are large. Figure 3 shows the data distribution for each
archetype. The experiment was run with 5 devices per archetype.

We see in Figure 4a that the FedCD algorithm converges quickly
(by round 45) and that archetypes with more skewed probability
distributions (archetypes whose distributions differ most from the
global distribution, e.g. archetypes 0, 5) achieve higher accuracy
than the central archetypes (archetypes whose distributions are
most similar to the global distribution, e.g. archetypes 2, 3), since
their distribution has a smaller standard deviation (see Figure 3).

Furthermore, while most archetypes converge under FedCD,
many archetypes under FedAvg continue to oscillate as seen in
Figure 4b as well as Figure 5.

(a) Test accuracy of the FedCD algorithm. There are 3 devices per
archetype and their average is shown.

(b) Comparisons of test accuracy for the FedAvg and FedCD (dotted)
algorithms.

Figure 4: Experiments with 6 hypergeometric archetypes
over 80 training rounds.

Figure 5: Average size of change in round-to-round per-
formance of FedCD versus FedAvg on the hypergeometric
archetypes experiment across all devices for 80 rounds.

In particular, while FedCD performs better on more skewed
archetypes relative to other archetypes, FedAvg performs better and
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converges faster on the central archetypes. The increased success
of FedCD on archetypes with more skewed data shows that FedCD
indeed improves performance by learning specialized models that
fit a given archetype’s data distribution, as desired.

3.4 Effects of Quantization
Training multiple models on each device allows devices to self-sort
into groups with similar archetypes by assigning similar scores to
the same models. However, as on-device memory is limited, each
model must be compressed to a smaller size, ideally without losing
accuracy.

Figure ?? shows that in the hierarchical archetypes experiment,
different levels of quantization had no significant effect on model
performance and only slightly impacted the time to convergence
of the resulting models. Note that FedCD results in a single model
per device, which is similarly insensitive to quantization as the
FedAvg global model. Furthermore, while the central server may
need to store significantly more models, relatively few models are
maintained in practice.

3.5 Model Selection Behavior
Note that after ℓ rounds of cloning, there will exist at most 2ℓ
global models. However, devices delete any models that already
specialized for other archetypes as they will perform poorly on
the device’s data, such that these models are not cloned in future
cloning rounds. Note that after 4 rounds of cloning, 10 out of 16
models were deleted from all devices.

Figure 6 depicts the consensus highest-scoring model that was
not deleted by all devices for each archetype in the hierarchical
archetypes experiment (consisting of 3 devices each). We can see
that after the first cloning milestone at round 5, the devices segre-
gate by meta-archetype. Subsequent cloning rounds have a limited
effect, as the preferred model of individual archetypes oscillates
between models 0 and 1 and models 4 and 5 respectively, indicating
that these models perform similarly.

Figure 6: Model preference of different archetypes over the
rounds of training for the hierarchical archetypes experi-
ment in Figure 1.

Table 1: Wall-clock comparison between FedAvg and FedCD

Experiment Rounds till
Convergence
(FedAvg, FedCD)

FedCD:FedAvg
Wall-Clock Time

Hypergeometric 300*,50 28.673
Hierarchical 300*,45 67.494

3.6 Communication Costs
Although the worst-case (each model is cloned at each milestone,
i.e. 2ℓ models) would have an exponential communication cost
overhead, devices tended to favor a single model and delete other
models that didn’t fit their data as well in practice. Note that this
supposes the existence of archetypes (as in our experiments).

Figure 7 shows that the number of active models initially in-
creases during the cloning rounds (5, 15, 25, 30) and drops during
the subsequent rounds as devices delete models they no longer
update to. In the end, each of the 30 devices update at most two
active models and only a total of 6 models were preferred by any
given device.

Figure 7: Total number of active models maintained across
30 devices over 45 training rounds of the hierarchical
archetypes experiment with different device bias levels.

As the bias and therefore the difference between archetypes in-
creases in the hierarchical archetypes experiment, devices of similar
archetypes converge to similar models faster by scoring them higher
than other models. In contrast, as the bias decreases and therefore
the data of different archetypes becomes more similar (note that a
bias of 0.2 represents the IID case within a meta-archetype), models
become more similar as well such that devices tend to maintain
multiple models for a larger number of rounds.

The goal of FedCD is for each device to have one high-performing
model and delete all other models. In some scenarios, such as the
low-bias situations depicted in 7, the algorithm terminates with
each device having two equally-ranked high-performing models.
This is fine as well, since each device can arbitrarily choose a model
for deployment without loss of performance. Both cases would
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exhibit a low standard deviation of the scores they assign to active
models (0 if all the scores were equal and 0 if there is a single
model). Figure 8 shows that the average standard deviation over
model scores approaches 0 at the end of the training rounds for all
levels of bias for the hierarchical archetype setup.

Figure 8: Average standard deviation of the 30 devices’ scores
(which sum to 1 for each device) over 45 rounds of the hi-
erarchical archetypes experiment with different device bias
levels. This shows that devices often end up with multiple
models with similar scores.

Table 1 shows the wall-clock time for a run of FedCD versus
a run of FedAvg till convergence. The run-time for FedAvg was
capped at 300 rounds of training, since it had not converged by
then for both the Hierarchical and Hypergeometric experiments.
The wall-clock time of the experiments provide another insight
into the advantage of FedCD as compared to the baseline, which
takes a significant number of rounds to train.

4 CONCLUSION
FedCD improves model performance on non-IID data by learning
specialized models that best fit the data distribution of a group of
similar devices (devices belonging to the same archetype). Previ-
ous approaches have taken a decentralized approach by accepting
complete peer-to-peer communication costs with full device par-
ticipation in each round. However, this framework is sensitive to
fluctuations in a real-world environment and incurs significant
communication overhead.

Our centralized framework addresses these concerns by requir-
ing only partial device participation in each round, though it incurs
the costs of storing multiple quantized models on each device and
the global server and sending multiple model updates per device
during training. In this work, our main contributions are:

• We propose a new framework for personalized FL.
• We empirically demonstrate that FedCD exhibits faster con-
vergence and higher accuracy than the baseline FedAvg al-
gorithm in several common non-iid scenarios.

• We empirically show the number of active models (the total
number of models stored on-device) does not explode by
aggressively deleting poor-performing models from a local
devices.

In conclusion, we showed that by amending the standard fed-
erated learning framework to train multiple global models simul-
taneously, we can improve model performance on non-IID data
while incurring some limited communication and storage overhead
during training.

4.1 Future Work
We chose our scoring function by experimentally comparing in-
tuitive scoring functions, and future work could include a more
principled analysis and extend it to other hyperparameters as well.

While we experimentally showed that FedCD converges faster
and achieves higher accuracy at a reasonably low cost, future work
could further analyze the dynamic nature of FedCD and attempt to
find theoretical guarantees for convergence as well as bounds for
communication and (server-side and on-device) storage costs.

Our experiments used the CIFAR-10 benchmark dataset, and
future work could amend and apply our algorithm to a more prac-
tical use-case with real world data. Future work could also explore
different types of bias other than label bias to determine the device
archetypes, including archetypes defined by modifications to the
input image.

Lastly, there are promising extensions of FedCD to other open
problems in FL, such as using the cloning technique to address
concerns regarding device bias and attack mitigation.
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